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Abstract. The role playing by the “soft” (kT < 1 GeV/c) region in the small-x behaviour of g1(x,Q2)
and the non-singlet structure function f1,NS(x,Q2) has been studied with the help of the effective QCD
Lagrangian which takes into account the lightest degrees of freedom - the constituent quarks and the π-
mesons (Goldstone bosons). It has been shown that the quark-quark interaction due to the pion exchange
has a negative coupling g for the isovector component (I = 1 in the t-channel) of f1(x,Q2) and isosinglet
component of g1(x,Q2). Here the pion induced interaction changes mainly the normalization of the quark
distribution (it decreases f I=1

1,NS(x,Q2) two times at x < 3·10−3) and changes slightly the effective exponents

λ (f1,NS , g1 ∼ x−λ at x → 0). On the other hand due to a positive value of coupling g the value of λ
increases by 15% for the isovector part of g1(x,Q2) and up to λ ≈ 0.5 (instead of λ ≈ 0.2 without the pion
contribution) for the isoscalar non-singlet structure function f I=0

1,NS(x,Q2).

1 Introduction

The small-x behaviour of the deep inelastic structure func-
tions plays an important role in the precise description of
the quark densities. As it is known [1–5] one cannot use the
conventional DGLAP [6–8] evolution equations to study
the non-singlet structure functions at very low x (x� 1)
or the singlet spin-dependent structure functions. Instead
of the usual kT ordering (k2

i+1,T � k2
i,T ), here the leading

logarithmic contribution comes from the region of

k2
i+1,T � βi+1k

2
i,T /βi . (1)

In (1) ki,T and βi are the transverse momentum and the
longitudinal momentum fraction of the quark with four-
momentum ki (see Fig. 1). This means that for small x
when βi+1/βi � 1 we can face with the inverse ordering
of transverse momenta (k2

i+1,T � k2
i,T ). Even more, not

excluded that in the middle of the evolution chain the
values of ki,T become close to the infrared region (ki,T ∼
µ) again (as at the beginning of the evolution).

In the framework of the double-logarithmic (DL) ap-
proximation with a constant QCD coupling (αs fixed) a
convenient way to calculate the amplitude (or the struc-
ture function) in this limit (x� 1) is to use the Kirshner-
Lipatov infrared evolution equation [9], i.e. to consider the
evolution of parton distributions with respect to the in-
frared cut off parameter µ 1. Using this method the small-
x asymptotics of the non-singlet unpolarized and polarized

a The work is supported by the Grant INTAS-93-283-ext
1 To be more precise - the evolution over the lnµ2, under the

condition: kiT ≥ µ
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Fig. 1. Ladder Feymnan graph for non-singlet structure func-
tions. Solid, dashed and wavy lines correspond to quark, photon
and gluon, respectively. Crosses mark particles on mass shell

structure functions have been studied [3,4]

fNS
1 (x,Q2) ∼ x−ω

(+)
,

gNS
1 (x,Q2) ∼ x−ω

(−)
(2)

where

ω(+) =
√

2CFαs/π, ω(−) = 1.04ω(+) . (3)

For the colour group SUc(N) the colour factor in (3)
CF = (N2 − 1)/(2N). We consider the case N = 3 only.
Unfortunately, it is not clear which value of αs one has
to put in (2). Of course it should be somewhere between
αs(µ2) and αs(Q2/x), but the interval is too large to make
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a definite prediction. For the case of the unpolarized distri-
bution f1(x,Q2), where the non-ladder Feynman diagrams
do not contribute within the DL approximation the linear
evolution equation with the ordering (1) and the running
coupling αs(q2) = 4π/[b ln(q2/Λ2)] can be solved explic-
itly [10]. In the small x limit f1(x,Q2) ∼ x−λ, where the
value of λ depends on the cut-off parameter µ and in the
extreme case µ = Λ the power λ = 2CF /b.

However it is hard to believe that the DL approxima-
tion of QCD is still valid at kT close to the infrared region
when the coupling αs(k2

T ) > 1. The best we can do at the
moment is to consider the perturbative QCD evolution in
the region of rather large transverse momenta (say, kT > 1
GeV/c) and to use the effective Lagrangian of QCD, which
takes into account only the lightest degrees of freedom
(light constituent quarks with massM ≈ 350 MeV and the
Goldstone pseudoscalar mesons π+, π0, π−) for small kT
(< 1 GeV/c). As it has been shown in [11], starting from
the simplest SU(6) wave function of a nucleon (i.e. from
the additive quark model) at low virtualities (Q2 ∼ M2)
the leading logarithmic evolution, described in the frame-
work of the effective Lagrangian, gives us (at Q2 ∼ 1
(GeV/c)2) a reasonable explanation of the two important
effects simultaneously: the experimentally observed “spin
crisis” (∆Σ = ∆u + ∆d + ∆s ≈ 0.3 < 1) and the viola-
tion of the Gottfried sum rule

∫ 1
0 [F p

2 (x) − Fn
2 (x)]dx/x =

0.24± 0.016 < 1/3 measured in [12]. This gives us a hope
that the same effective Lagrangian would provide reason-
able continuation into the small-kT region in our case
(small-x behaviour of the DL structure functions) also. It
is interesting to note that the emission of pions (at low-kT )
diminishes the asymptotic value of the unpolarized quark
density f I=1

1,NS(x,Q2) with the t-channel isospin I = 1 but
increases (almost by 3 times) the spin-dependent distri-
bution gI=1

1,NS(x,Q2) at x � 1. Not excluded that it is
the fact which may explain the large difference between
the values of the proton and neutron structure functions
gp1(x,Q2) − gn1 (x,Q2) at rather small x ∼ 0.01 measured
by the SMC [13]. At the same time in the singlet chan-
nel the quark-quark pion induced interaction diminishes
the small-x asymptotics of the singlet structure function
g1,S(x,Q2).

In Sect. 2 we remind the form of the double-logarithmic
evolution equation for singlet and non-singlet structure
functions with the running coupling αs and the effective
QCD Lagrangian. In Sect. 3 the numerical calculations of
the structure functions at small x are discussed. We sum-
marize our results in Sect. 4. Analytical formulae for the
non-singlet structure functions taking into account both
the nonperturbative QCD and pion exchange contribu-
tions are presented in Appendix.

2 Double-logarithmic evolution

2.1 Non-singlet structure functions

First of all let us define what we call here the non-singlet
structure function f1,NS(x,Q2) or g1,NS(x,Q2). In the

case of pure QCD the non-singlet component corresponds
to the evolution of the initial quark (Fig. 1), where one
has only one fermion line, and no any new quark-antiquark
pair was produced during the evolution. As the gluon
emission does not change the quark flavour the sort of
the final (upper in Fig. 1) quark, which absorbs the heavy
photon, is the same as the sort of the initial quark. Taking
into account the pion emission one faces with a new pos-
sibility: due to the isospin of the pion (I=1) the flavour of
the t-channel (vertical) quark may be changed. Thus we
have to consider separately the t-channel isosinglet and
isovector sets of the diagrams, i.e. there are two types
of the non-singlet structure functions - with the isospin
I = 0 (say, f I=0

1,NS(x,Q2)) and with I = 1 (f I=1
1,NS(x,Q2)).

Only the baryon charge does conserve now during the non-
singlet evolution.

Owing to the linearity of the evolution equation the
final structure function can be written as the sum of the
singlet and non-singlet components. In the singlet case
one deals with the system of two equations (for quarks
and gluons). So there are two eigenfunctions and we have
to choose its relative contribution (i.e. the coefficients in
front of these functions) starting from the conditions that
these two singlet components should reproduce the ini-
tial gluon distribution G(x,Q2) and the first derivative
∂G(x,Q2)/∂ lnQ2 at Q2 = Q2

0. Then one has to add the
non-singlet components, corresponding to the quark (and
separately antiquark) evolution with the t-channel isospin
I = 0 (and/or 1) in order to reproduce the initial quark
(antiquark) distribution at Q2 = Q2

0. Here one has to take
into account that some fermion component (with the equal
quark and antiquark densities) are already contained in
the singlet structure functions. Thus, even having no an-
tiquarks in the initial states, one has to add the antiquark
non-singlet component in order to cancel the antiquark
contribution coming from the singlet part.

Below we will use the double-logarithmic evolution
equation in the integral form as it has been done in [3].
First such an equation has been considered for the case of
QED (the e+e− → µ+µ− annihilation at small momen-
tum transfer) in [1,2]. It is convenient to introduce the
quark-quark amplitude A(t, β), which satisfies the equa-
tion [3]

A(t, β) =
∫ 1

β

dβ′

β′

∫ tm

µ2

dt′

t′
G(tm)A(t′, β′) +A0(t, β) (4)

(where the upper limit of the t′ integral is tm = tβ′/β)
and to write the non-singlet structure function as

f1,NS(x,Q2) = e2q

[
δ(x− 1) +

∫ Sm

µ2
A(t, β̃)

dt

t

]
(5)

with β̃ = x + t/s and Sm = Q2/(4x). In (5) eq is the
fractional electrical charge of a quark. We have applied
the Sudakov parametrization [14] for k

k = −αq′ + βp+ kT (6)

where q′µ = qµ − pµq
2/2(pq), (q′)2 ≈ 0, t = −k2

T > 0, s =
2(pq) and the analogous parametrization for k′ (and for kj
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in Fig. 1 with parameters αj and βj). The unhomogeneous
term reads

A0(t, β) =
CF

2π
αs(t/β) . (7)

For the case of the perturbative QCD equations (4), (5)
have been discussed in detail in [3]. Equation (4) contains
two logarithmic integrals. The first one is over β′ with the
natural limits from β to 1 and the second integration over
t′ = |k′T |2 runs from the infrared cut-off µ2. The upper
limit

tm = tβ′/β (8)

is controlled by the condition |k2
i,||| � |k2

i,T | (i.e. the virtu-
ality of the t-channel line should be very close to the trans-
verse momentum square transferred through this line. In
other case one looses one logarithmic integration dk2

T /k
2
T ).

As it has been shown in [3] the argument of the running
QCD coupling is also given by the value of tm so for the
gluon emission G(tm) = CFαs(tm)/2π. It is nothing else
but the value of the Altarelli-Parisi splitting kernel at
z → 0, i.e. near the leading (j = 0) singularity which
gives us the double-logarithmic contribution.

The final loop gives only one logarithm 2 and we have
written this last integration separately in relation (5). The
upper limit is Sm = |kT,max|2 = s/4. Of course, one can
use this double-logarithmic approximation in the frame-
work of the perturbative QCD at small distances only,
i.e. when the transverse momentum of the emitted glu-
ons is large enough, say, |kg,T | > 1 GeV/c. For a smaller
kT we shall use the effective Lagrangian which takes into
account the lightest degrees of freedom - the constituent
quarks and the pseudoscalar (Goldstone) mesons.

The form of the effective Lagrangian is given by the
symmetry conditions 3

L = iq̄γµ∂µq −Mq̄ exp{iγ5τ
aπa/fπ}q (9)

where M denotes the constituent quark mass with M =
350 MeV and the dimensional constant fπ = 93 MeV.

Such a Lagrangian has been obtained, for example, in
[15] after the spontaneous breaking of the chiral symmetry
in the instanton QCD vacuum but actually it has a much
wider context ( see [16], where it has been argued that one
can use the Lagrangian (9) up to rather large momenta
∼ 1 GeV/c). The same Lagrangian has been successfully
used in [11] for the explanation of the “spin crisis” and
the Gottfried sum rule violation∫ 1

0

[
F p

2 (x,Q2)− Fn
2 (x,Q2)

]dx
x

= 0.24± 0.016 <
1
3
,

where F p
2 (x,Q2) and Fn

2 (x,Q2) are the proton and neu-
tron structure functions measured in DIS.

2 One looses the longitudinal logarithm due to the fact that
the structure functions f1(x,Q2), g1(x,Q2) correspond to the
s-channel discontinuity (imaginary part of the amplitude)

3 For the sake of simplicity here we consider the SU(2)
flavour group but one can easily take into account the s-quark
and all the octet of the pseudoscalar mesons putting in (9)
the Gell-Mann matrices λa instead of the Pauli ones τa and
continuing the sum over a up to a = 8

As it has been discussed in [11] the reasonable upper
limit of the validity of Lagrangian (9) is the mass of the
η′-meson (958 MeV ∼ 1 GeV). This pseudoscalar meson is
not included in (9). Due to the axial anomaly it is mixed
with the G̃µνGµν gluon operator 4. Thus for the momenta
larger than 1 GeV/c (mη′) one has to take into account
the gluon degrees of freedom explicitly.

So in the next section we shall use perturbative QCD
evolution equation (4) in our calculation if the gluon mo-
menta are large enough (|kg,T |2 > t0 = 1 (GeV/c)2) and
the equation originated from effective Lagrangian (9) for
a smaller kT (µ ≤ |kT | ≤ Mη′c ≈ 1 GeV/c). The main
vertex (which gives the leading logarithm and can be ob-
tained from the Lagrangian (9)) is the single pion emission
one. In other words we deal with the γ5-theory with the
vertex Mγ5τ

a/fπ which has been first considered for the
deep inelastic scattering leading logarithm structure func-
tion by Gribov and Lipatov [6]. In such a theory one has
an evolution equation analogous to the DGLAP one. The
equation has been discussed in detail in [11] and here we
shall use it within the DL approximation only. With the
double-logarithmic accuracy one has

∂qi(x,Q2)
∂ lnQ2 (10)

=
M2

16π2f2
π

{∑
j

∫ 1

x

Φij(z)qj(x/z,Q2)
dz

z
− φqi(x,Q2)

}
,

∂∆qi(x,Q2)
∂ lnQ2 (11)

=
M2

16π2f2
π

{∑
j

∫ 1

x

∆Φij(z)∆qj(x/z,Q2)
dz

z

−φ∆qi(x,Q2)
}

where qi = qi+ + qi− (and ∆qi = qi+ − qi−) denotes
the sum (and the difference) of the quark densities with
the positive (q+) and negative (q−) helicities, f1(x,Q2) ∼
q(x,Q2) while g1(x,Q2) ∼ ∆q(x,Q2), the indices i and j
denote the flavour of the quark and the kernels Φij are
given by the expressions [6,11]

Φij(z) = 2Nij(1− z) ,
∆Φij(z) = −2Nij(1− z) (12)

where Nij = 1 for the charged pion emission and Nij =
1/2 for the π0 emission, i.e. Nij = 1 − δij/2. The second
term in (10), (11)

φ = φi =
∑
j

∫ 1

0
Φij(z)dz =

∑
j

Nij = 3/2 (13)

reflects the conservation low. After the interaction (new
parton emission) a parton which carries a momentum frac-
tion x produces a new particle with the momentum frac-
tion xz and simultaneously the initial parton (with the

4 This is an important new feature which explains in partic-
ular the U(1) problem
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fraction x) disappears. Within the DL approximation one
may omit this last term proportional to φ as it does not
give the double-logarithmic contribution. For the same
reason we did not write in (10), (11) the contribution com-
ing from the splitting of the pion into the quark-antiquark
pair as the corresponding kernel Φπ = 2Nijz vanishes
when z → 0.

Therefore the only contribution which one should take
into account within the DL approximation comes from the
z → 0 limit of the Φij(z) kernel and we can come back to
equation (4) putting the coupling G(tm) in the form

G(tm) =
CF

2π
αs(tm)[1− θ(t0 − t)θ(t0 − t′)]

+gθ(t0 − t)θ(t0 − t′) (14)

where the constant g depends on the t-channel isospin and
the sort of the function under consideration (f1(x,Q2) or
g1(x,Q2)). For the case of f1(x,Q2) (i.e q(x,Q2))

gI=0 =
3M2

16π2f2
π

, gI=1 = − M2

16π2f2
π

, (15)

while for the case of g1(x,Q2) (i.e. ∆q(x,Q2)) the constant
g changes the sign in accordance with relations (12)

gI=0 = − 3M2

16π2f2
π

, gI=1 =
M2

16π2f2
π

. (16)

The inhomogeneous term in (4) is now equal to

A0(t, β) =
CF

2π
αs(t/β)θ(t− t0) + gθ(t0 − t) . (17)

The smallness of the factor M2/(16π2f2
π) ∼ 0.1 jus-

tifies here the possibility of using the leading logarithmic
evolution equations in the region of rather small kT start-
ing from the kT = M . Up to the |k2

T | = t0 = 1(GeV/c)2
we will use the evolution equation given by the effective
Lagrangian (9) (the second term in (14)) and then come
back to the conventional perturbative QCD. The form of
the θ-function written in the first term of (14) reflects the
fact that the transverse momentum of the gluon in Fig.
1 kg,T = k′T − kT is close to the largest value of the mo-
mentum kT or k′T . Thus, within the accuracy of the DL
approximation when either kT � k′T or kT � k′T we can
put kg,T = max{k′T , kT } and write the θ(|k2

gT | − t0) as
1− θ(t0 − t)θ(t0 − t′) 5.

If one puts the factor like θ(t − t0)θ(t′ − t0) instead
of the square brackets in (14) he will loose any possibility
to go back to the small-kT region (|k2

T | < t0) after the
first iteration of the perturbative QCD evolution. In this
case the non-perturbative (the second term in (14) coming
from effective Lagrangian (9)) part of the evolution may
change only the “initial” distributions at t = t0 but noth-
ing else. All the asymptotic behaviour (large Q2 or small
x) of the structure functions f1(x,Q2) and g1(x,Q2) would
be the same as it is predicted by the conventional pertur-
bative QCD without any pion emission/exchange. For the

5 We remind that t = |k2
T |, t′ = |(k′T )2|
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Fig. 2. Ladder Feynman graphs for singlet structure function
for initial gluon a and quark b, respectively. Curves are as in
Fig. 1. Crosses mark particles on mass shell

coupling constant simple one loop expression αs(k2) =
4π/[b ln(k2/Λ2)] with Λ = 200 MeV/c has been used.

Strictly speaking we cannot use equation (4) to cal-
culate the spin-dependent structure function g1(x,Q2) at
very small x. The equation (4) sums up all the ladder di-
agrams (Fig. 1) but the function g1(x,Q2) corresponds
to the negative signature amplitude where the non-ladder
contributions coming from an additional gluon exchange
are important at small x. In the DL approximation limit
the non-ladder graphs give us the terms of the order of
(αs ln2 x)n [9]. Fortunately this non-ladder terms are not
too important numerically. In the non-singlet case at large
Nc they are suppressed by the factor 1/N2

c . From the
asymptotical point of view one can estimate the role of the
non-ladder contributions comparing the small-x behaviour
(2) of the functions f1(x,Q2) (where there are no any non-
ladder leading logarithmic contribution) and g1(x,Q2).
For the negative signature amplitude (g1(x,Q2)) the
asymptotic power of x is 4% larger (see (3)). To take
this fact into account, at least approximately, we increase
by 8% the “effective” value of αs in our computations of
the non-singlet components of g1(x,Q2) as the value of
ω(−) is proportional to

√
αs what follows from (3). Due

to the zero spin of the pion there are no any non-ladder
double-logarithmic contributions originated from the pion
exchange. So no any additional modification of the second
term of the coupling G(tm) in (14) is needed.

2.2 Singlet g1(x,Q2)

The linear equation which sums up all the ladder double
logarithms in the singlet case has exactly the same form
(4) as before. The only difference is that now the equa-
tion has the matrix form. Indeed, in the singlet channel
there appear the graphs with the two gluons (instead of
two quarks) in the t-channel (Fig. 2). These quark and
gluon t-channel states mix with each other and one has
to consider the system of two equations which describes
the evolution of quarks and gluons simultaneously. From
the formal point of view this means that the amplitudes,
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A(t, β) and the kernels, G should be written as the ma-
trices Ac

d and Gc
d where the upper index denotes the sort

of the current parton (c = q for a quark and c = g for a
gluon) while the lower one denotes the type of a parent
parton for Gc

d or of a target one for the amplitude Ac
d. The

equation for the matrix elements reads

Ac
d(t, β) = (A0)cd(t, β)

+
∑
r=q,g

∫ 1

β

dβ′

β′

∫ tm

µ2

dt′

t′
Ĝc
rA

r
d(t

′, β′) . (18)

Let us note that now we discuss the polarized distribu-
tion g1(x,Q2) only. For the unpolarized structure function
f1(x,Q2) the low-x asymptotics is governed by the pure
gluon amplitude as the gluon-gluon splitting kernel PG

G (z)
has the 1/z singularity at z → 0. In the complex momen-
tum (j) plane it corresponds to the singularity at j = 1
and leads to the DL asymptotic behaviour f1,S(x,Q2) ∼
x−1Φ(αs ln(1/x) lnQ2) with the function Φ not having a
powerlike (∼ x−λ, λ > 0) singularity at x → 0. The
asymptotics originated from the quark exchange is sup-
pressed by one power of x (∼ x0Φ̃(αs ln(1/x) lnQ2)) and
may be neglected in comparison with the gluon contribu-
tion. However, for the case of the spin-dependent functions
g1(x,Q2) the splitting kernels ∆P c

d (z) tend to a constant
limit at z → 0. The position of their rightmost singular-
ities is j = 0 [7,17]. Therefore all the splitting kernels
(q → gq, q → qg, g → gg, g → qq̄) give the same double
logarithms and should be taken into account.

The matrixGc
d for the polarized distributions g1(x,Q2)

has the form [5]

Ĝa
b =

Ĥa
b

2π
[
1− θ(t0 − t)θ(t0 − t′)

]
+ĝab θ(t0 − t)θ(t0 − t′) (19)

where the matrix Ĥ looks like [7,5]

Ĥ =
(

4Ncαs(t̃) 2CFαs(t)
−nfαs(t′) CFαs(tm)

)
(20)

Here nf is a number of active quark flavours and t̃ =
t′β/β′. The important question which arguments have the
running coupling constants αs in (20) will be discussed in
the next subsection. If some argument of running coupling
(t̃, t, t′ or tm) becomes smaller that t0 we put it equal to
t0. The matrix ĝ is

ĝ =
(

0 0
0 g

)
. (21)

Of course the last term describing the non-perturbative
pion emission does only presence in the quark-quark split-
ting with the constant g = −3M2/(16π2f2

π) which corre-
sponds to the zero isospin (see (15), (16)). The Born term
in (18) reads

A0(t, β) =
Ĥ0

2π
θ(t− t0) + ĝθ(t0 − t) . (22)

with Ĥ0 given by the relation

Ĥ0 =
(

4Ncαs(t0) 2CFαs(t)
−nfαs(t0) CFαs(t/β)

)
. (23)

As in the non-singlet case the contribution of the non-
ladder gluons (which also give the double logarithms for
the negative signature amplitude at small x [9]) will be
taken effectively into account by the numerical correction
of the matrix Ĥ. Instead of Ĥ we will use in our compu-
tations the matrix Ĥeff = Ĥ + δ̂ with

δ̂ =
(−2.016αs(t̃) −0.179αs(t)

0.168αs(t′) 0.025αs(tm)

)
. (24)

The elements of the δ̂-matrix reflects the nonladder con-
tribution at the complex momentum j = jr close to the
rightmost singularity of the DL approximation perturba-
tive QCD function g1(x,Q2), i.e. at z = j

√
2π/[Ncαs] =

3.45 (for nf = 4) [5]. Therefore it provides the correct
asymptotic behaviour of our solution at x→ 0. It has been
checked that such an approximation reproduce the pure
QCD DL approximation results [5] with the 15% accuracy
within the interval of x = 10−1−10−5 and Q2 = 10−2000
(GeV/c)2.

Finally, to obtain the singlet component of the struc-
ture function g1(x,Q2) one has to put the quark compo-
nent of the amplitude Aq

d into (5)

gd1,S(x,Q2) = e2dδ(1−x)+

∑nf
q=1 e

2
q

nf

∫ Sm

µ2
Aq
d(t, β̃)

dt

t
(25)

with β̃ = x+ t/s. The equations (18-25) with the nf = 4
will be used in Sect. 3 in order to estimate the small-x be-
haviour of the singlet component of the structure function
g1(x,Q2) in the presence of the non-perturbative, pion in-
duced interactions at rather low k2

T (∼ 0.1− 1 (GeV/c)2)
given by effective Lagrangian (9).

2.3 Argument of the running coupling

Let us discuss now which argument of αs we are to use
in the master equation (18). The simplest way to answer
this question was proposed in [18]. One is to calculate the
logarithmic contribution to the running coupling αs com-
ing from a new sort of a light quark and then to use the
fact that owing to the renormalization group all the other
contributions to αs are to have the same q2-dependence as
the quark loop has. In the case of the quark-quark split-
ting kernel (or the non-singlet function) the only possibil-
ity to include the new quark loop is to insert it into the
s-channel gluon propagator, where one obtains the log-
arithmic (dm2/m2) integration over the quark-antiquark
pair mass m (i.e. over the virtual gluon mass). The loga-
rithmical behaviour continues up to the m2 ∼ tm = tβ′/β.
At larger m2 > tm the longitudinal component of the t-
channel quark momentum k2

|| ∼ m2β/β′ ≥ t = |k2
T | be-

comes essentially larger than the transversal one. This de-
stroys both the logarithm (dt/t) in integration over k2

T = t
and the logarithm in the integral over m2.
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However the prescription αs = αs(tm) is not the uni-
versal one. For the quark to gluon (and gluon to quark)
splitting kernels we again have to insert an additional
quark loop into the gluon (but now the t-channel gluon)
propagators. Certainly, here the logarithm depends on the
gluon virtuality (t for the PG

q and t′ for the P q
G kernels).

The situation with the gluon-gluon kernel is more com-
plicated. Now the new quark loop is to be inserted in each
gluon propagators (s-channel and t-channel) and into the
triple gluon vertex. The t-channel propagators give us the
ln t and ln t′, while the s-channel propagator gives ln tm (
as in the non-singlet, i.e. P q

q case). Finally it is easy to see
by straightforward calculations that the logarithm coming
from the vertex diagram depends on the largest virtual-
ity, i.e. on the tm. This point has been discussed in more
detail in [19] where it has been shown that the vertex and
the s-channel gluon logarithmic contributions cancel each
other. However, in the case under discussion we have two
vertexes. So, the sum of all the logarithms looks like

ln t+ ln t′ + ln tm − 2 ln tm = ln(t′β/β′) .

In other words the probability of gluon-gluon splitting is
proportional to αs(t̃) with t̃ = t′β/β′ ≤ t′. To take these
running couplings into account one is to use in the master
equation (18) the matrix Ĥ defined in (20) instead of the
quantity αs(tm)CF for the non-singlet case.

3 Discussion of numerical results

The results of the computation are presented in Figs. 3-10.
For the calculation of the non-singlet structure functions
we have used the DL equations (4), (5), (7), (14), (15),
(16) with the lower (infrared) limit µ = M = 350 MeV/c,
t0 = 1 (GeV/c)2, Λ = 200 MeV/c, nf = 4 and the sim-
plest initial condition - the one quark with β = x = 1
at t = M2 (see (5)); i.e. we have considered deep inelas-
tic scattering on a “free” quark target. 6 We have found
the analytical solution of the double-logarithmic integral
equation for the non-singlet case which is presented in Ap-
pendix. An application of the analytical solution permits
us to calculate the non-singlet structure functions for very
small x (up to x = 10−7). For the singlet case we have
solved the DL integral equation by the iteration method
with a typical number of iterations 15÷ 17 and a number
of points for integration over β′ (t′) in (18) is equal to 142
(380). The accuracy of the performed calculations of the
singlet structure functions is higher than 5%.

In Fig. 3a (4a) the x-dependence of the isovector struc-
ture function f I=1

1,NS(x,Q2) (gI=1
1,NS(x,Q2)) is shown atQ2 =

10, 30, 100 and 300 (GeV/c)2. For f I=1
1,NS(x,Q2) the power

of the asymptotic behaviour (x−λ) reveals itself at x <
10−3 and for gI=1

1,NS(x,Q2) this happens even at x < 10−2.

6 As it has been discussed at the end of Sect. 2.1 for the
g1,NS(x,Q2) the QCD coupling αs has been multiplied by
1.08 to take into account effectively contributions of non-ladder
Feynman graphs

Fig. 3. Non-singlet isovector structure function f I=1
1,NS(x,Q2).

a Dependence of fI=1
1,NS(x,Q2) on x and Q2. b Behaviour of

logarithmic derivative λ. c Dependence of ratio R on x and
Q2. Quantities of λ and R are defined in text. Solid, dashed,
dotted and dash-dotted lines correspond to Q2 = 10, 30, 100
and 300 (GeV/c)2, respectively

It follows from the analytical solution that the asymp-
totical behaviour of the non-singlet structure function at
small x and Q2 > t0 = 1 (GeV/c)2 looks like (see (49) in
Appendix)

fNS(x,Q2) = F1x
−λ1{lnκ1(Q2/Λ2)− lnκ1(µ2/Λ2)

+κ1 lnκ1−1(Q2/Λ2)[ψ(1)− ψ(λ1)]} (26)

where F1 denotes some constant and ψ(ζ) is the digamma
function [20]. In (26) λ1 is the solution of (46) (see Ap-
pendix) with the largest value and κ1 = 8/[(33− 2nf )λ1].
The x-dependence of the effective power λ = −∂ ln f1(x,Q2)
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Fig. 4. Non-singlet isovector spin-dependent structure func-
tion gI=1

1,NS(x,Q2). a Dependence of gI=1
1,NS(x,Q2) on x and Q2.

b Behaviour of logarithmic derivative λ. c Dependence of ra-
tio R on x and Q2. Quantities of λ and R are defined in text.
Curves are as in Fig. 3

/∂ lnx (or −∂ ln g1(x,Q2)/∂ lnx for g1) is shown in Fig.
3b (4b). Due to the positive sign of the constant g for the
case of the isovector function gI=1

1,NS(x,Q2) here (Fig. 4b)
the value of λ at small x (λ = 0.30) is larger than in Fig.
3b (λ = 0.24), i.e. for f I=1

1,NS(x,Q2) where g is negative
(see (15), (16)).

To demonstrate better the role of the non-perturbative
(pion emission) contribution, in Fig. 3c (4c) we plot the
ratio R of the whole function f I=1

1,NS(x,Q2) (gI=1
1,NS(x,Q2))

to the pure perturbative QCD prediction given by the so-
lution of the same equations (4), (5), (7), (14) with the
same initial condition, but with g = 0. In the case of
f I=1
1,NS(x,Q2) this ratio at small x tends to the constant

limit close to R ≈ 0.5. As here the value of g is negative
the system trys to go out of the region |k2

T | < t0. Thus
the behaviour of the function f I=1

1,NS(x,Q2) is close to the
pure perturbative QCD case and only the normalization of
the asymptotics becomes smaller (about 2 times). On the
contrary, the analogous ratio R for the polarized function
gI=1
1,NS(x,Q2), where g > 0 7, increases with the energy (i.e.

1/x), the effective power λ here is larger (0.30) than in the
pure perturbative QCD case. In particular, in the HERA
kinematical range (say, at x = 10−3−10−4, Q2 = 10−300
(GeV/c)2) this ratio reachs the values of about 2.5-2.9 It
is a large effect which may be very useful for the explana-
tion of a large difference between the proton and neutron
structure functions gp1(x,Q2)− gn1 (x,Q2) in the region of
x ∼ 10−2 [13].

The results of our calculations for the t-channel isospin
equal to zero are presented in Figs. 5 and 6. The value of
λ for the structure function f I=0

1,NS(x,Q2) changes dramat-
ically due to the pion contribution and becames equal to
≈ 0.5 as one can see from Fig. 5b. It is remarkable that we
get the value of λ which agrees very well with the predic-
tion of the Regge phenomenology. We would like to stress
that we have not free parameters in our approach. The
only parameter which is not absolutely reliably fixed from
experimental data is the mass of the constituent u and d
quarks which has been put equal to 350 MeV. We can see
from Fig. 5a that the behavior ∼ x−λ is valid from rather
large x ∼ 0.01. We can see also from Fig. 5c that the ratio
of all the contributions to f I=0

1,NS(x,Q2) including the non-
perturbative ones to the pure perturbative QCD contribu-
tions is larger than 40 at x < 10−4. Hence the small-x be-
haviour of the non-singlet structure function f I=0

1,NS(x,Q2)
is changed crucially by the non-perturbative effects. For
the spin-dependent structure function gI=0

1,NS(x,Q2) the
pion exchange contributions are not so important as for
f I=0
1,NS(x,Q2). Indeed, as we can see from Fig. 6b the value

of λ (0.25) does not differ crucially from its value predicted
in the framework of the perturbative QCD (λ = 0.22 [21]).
This is due to the negative value of the constant g given
by (16). We would like to remark that the power λ for
gI=0
1,NS(x,Q2) for the isotopical singlet channel is smaller

than that one for the I = 1 channel (λ = 0.30) for which
the value of the pion exchange constant g is positive in ac-
cordance with (16). Vice versa for the unpolarized struc-
ture function f1,NS(x,Q2) the power λ for the isosinglet
channel is larger than that one for the isotriplet channel
as for the former case g is large and positive and for the
latter one the pion exchange constant g is negative. We
would like to remark that the values of the effective pow-
ers λ at x ≤ 10−3 do not practically depend on Q2 as we
can see from Figs. 3–6. Such a behaviour is in accordance
with the prediction of formula (26). At low x the effective
powers λ are very close to their asymptotical values (λ1)
which can be found as solutions of (46) (see Appendix).

7 Here we have two minuses: one due to the spin-flip nature of
the γ5 quark-pion vertex and another one due to the isovector
nature of the pion (i.e. the matrix τa in the vertex). Finally
one has g > 0 for the isovector component of gI=1

1,NS(x,Q2)
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Fig. 5. Non-singlet isoscalar structure function f I=0
1,NS(x,Q2).

a Dependence of fI=0
1,NS(x,Q2) on x and Q2. b Behaviour of

logarithmic derivative λ. c Dependence of ratio R on x and
Q2. Quantities of λ and R are defined in text. Curves are as in
Fig. 3

For the singlet component of the spin-dependent func-
tion g1(x,Q2) calculated in a pure “ladder” approximation
(with δ̂ = 0) the set of the curves is shown in Figs. 7, 8
where the evolution starts from the initial target gluon and
quark, respectively. In both cases at low x the behaviour of
g1(x,Q2) ∼ x−λ(Q2)γ have the powerlike character with
an almost constant values of λ ≈ 1.48 and γ ≈ 0.5. When
the evolution starts from the gluon target the role of the
pion induced interactions is negligible and the ratio RG

(of the whole singlet function g1(x,Q2) to the pure per-
turbative QCD prediction) is close to 1 (see Fig. 7c), while
for the initial quark target the value of Rq decreases with
increasing of 1/x and reaches Rq ≈ 0.7 at x ≤ 0.01 (see

Fig. 6. Non-singlet isoscalar spin-dependent structure function
gI=0
1,NS(x,Q2). a Dependence of gI=0

1,NS(x,Q2) on x and Q2. b
Behaviour of logarithmic derivative λ. c Dependence of ratio
R on x and Q2. Quantities of λ and R are defined in text.
Curves are as in Fig. 3

Fig. 8c). All these features reflect the fact that due to a
larger spin and colour charge of the gluons they play the
dominant role in the singlet structure function g1(x,Q2)
evolution especially at small x. As the gluons do not inter-
act with the pions the ratio RG ≈ 1. In the latter case the
initial quark emits the pions at the beginning of the evolu-
tion. Therefore the ratio Rq falls down. Then (somewhere
in the region of x ∼ 0.1−0.01), after the PG

q splitting ker-
nel the evolution switches into the gluon channel. Hence
it becomes mainly of the gluon nature and the value of Rq

is frozen up (does not change any more at x smaller than
0.01).
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Fig. 7. Singlet gluon spin-dependent structure function
gG1,S(x,Q2) in “ladder” approximation. a Dependence of
gG1,S(x,Q2) on x and Q2. b Behaviour of logarithmic deriva-
tive λ. c Dependence of ratio RG on x and Q2. Quantities of
λ and RG are defined in text. Curves are as in Fig. 3

As it has been explained above to estimate 8 the con-
tribution of non-ladder graphs we replace the matrix Ĥ in
(19) and (18) with Ĥeff = Ĥ+δ̂ where Ĥ and δ̂ have been
defined in (20), (24). The results of our calculations are
presented in Fig. 9 and Fig. 10. We see from Fig. 9a, 10a
that the contributions of non-ladder graphs do not change
the power-like asymptotical behaviour of g1,S both for the
initial gluon and quark. For x < 10−2 the effective pow-
ers λ for initial gluon and quark cases are approximately
equal to each other. However as in a pure perturbative
QCD case [5] for the singlet structure functions the non-
ladder contribution diminishes the power λ. For small x

8 One may say to simulate

Fig. 8. Singlet quark spin-dependent structure function
gq1,S(x,Q2) in “ladder” approximation. a Dependence of
gq1,S(x,Q2) on x and Q2. b Behaviour of logarithmic deriva-
tive λ. c Dependence of ratio Rq on x and Q2. Quantities of λ
and Rq are defined in text. Curves are as in Fig. 3

the value of λ ≈ 1.33 in Figs. 9, 10 is smaller than in
Fig. 7b, Fig. 8b (λ ≈ 1.48) and as in the non-singlet case
λ is almost independent on Q2 for x < 10−2. The rela-
tive contribution of the non-ladder graphs to g1,S(x,Q2)
increases with a decrease of x as we can see from Figs.
9c, 10c. Indeed, the ratio RNL of a sum of the ladder and
non-ladder graph contributions to the ladder graph ones is
approximately equal to 0.8 at x = 0.1 and becomes equal
to ≈ 0.3 at x = 10−4 both for the initial gluon (RNL

G ) and
quark (RNL

q ) the pion exchange contributions being taken
into account in all calculations.
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Fig. 9. Singlet gluon spin-dependent structure function
gG1,S(x,Q2) with effective contributions of non-ladder graphs. a
Dependence of gG1,S(x,Q2) on x and Q2. b Behaviour of loga-
rithmic derivative λ. c Dependence of ratio RNL

G on x and Q2.
Quantities of λ and RNL

G are defined in text. Curves are as in
Fig. 3

4 Conclusion

The double-logarithmic integral equation describing both
the perturbative QCD and non-perturbative (pion
exchange) contributions to the structure functions at small
Bjorken x has been proposed. The analytical solution of
the equation for the non-singlet structure functions
(f1,NS(x,Q2) and g1,NS(x,Q2)) has been found. The pow-
erlike asymptotical behaviour (∼ x−λ1) of the structure
functions at low x has been predicted (see formula (26)).
The effect of the non-perturbative pion induced interac-
tion on the small x asymptotical behaviour of the double-
logarithmic structure functions for Q2 > 1 (GeV/c)2 de-

Fig. 10. Singlet quark spin-dependent structure function
gq1,S(x,Q2) with effective contributions of non-ladder graphs. a
Dependence of gq1,S(x,Q2) on x and Q2. b Behaviour of loga-
rithmic derivative λ. c Dependence of ratio RNL

q on x and Q2.
Quantities of λ and RNL

q are defined in text. Curves are as in
Fig. 3

pends strongly on the sign of the pion coupling constant g
as one can see from Figs. 3-6. The pion exchange increases
significantly the normalization factor of f I=0

1,NS(x,Q2) and
gI=1
1,NS(x,Q2) for positive values of g and decreases it ap-

preciably for f I=1
1,NS(x,Q2) and gI=0

1,NS(x,Q2) as g < 0. For
the t-channel with the isospin I = 1 the effect of the
pion exchange leads both to a decrease of the difference of
the proton and neutron structure functions F p

2 (x,Q2) −
Fn

2 (x,Q2) at small x and to an increase of gp1(x,Q2) −
gn1 (x,Q2). The former effect gives a contribution which
leads to the Gottfried sum rule violation observed by NMC
[12]. The latter one is presumably related with the large
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difference of gp1(x,Q2)−gn1 (x,Q2) measured in [13]. Due to
the large and positive value of the pion exchange constant
(g = 0.27 in accordance with (15)) the non-perturbative
contributions to the small-x asymptotical behaviour of
f I=0
1,NS(x,Q2) become very important.

The logarithmic derivatives of the structure functions
over ln(1/x) are more stable and do not differ significantly
from the pure perturbative QCD predictions except the
case of f I=0

1,NS(x,Q2) when λ changes crucially due to the
pion exchange. It is remarkable that for this case the log-
arithmic derivative, λ at small x becomes equal to ≈ 0.5
which is in agreement with its phenomenological Regge
pole value.

Our calculation of the flavour singlet structure func-
tions demonstrates a powerlike dependence both on x and
Q2 (g1,S ∼ (Q2)γx−λ1). The role of the “soft” (kT < 1
GeV/c) region is not so important for the singlet case,
as here the t-channel gluons (which do not emit the pi-
ons) govern the small-x evolution. It is demonstrated that
the pion exchange decreases g1,S for the initial quark and
does not practically change the structure function for the
parent gluon. Our estimates of the role of the non-ladder
Feynman graph contributions show that they decrease val-
ues of g1,S and their relative contributions increase with
a decrease of x. In spite of the fact that the singlet com-
ponent of g1(x,Q2) is much more infrared stable, unfortu-
nately, one cannot consider the results presented in Figs.
7-10 as true theoretical predictions. The values of the loga-
rithmic derivative λ ≈ 1.48 (without the non-ladder graph
contributions) and λ ≈ 1.33 (a sum of the ladder and non-
ladder graph contributions) are too large and the next-
to-leading order corrections are probably crucially impor-
tant. Strictly speaking the original double-logarithmic ap-
proximation is valid for γ � 1 and λ � 1 only. Never-
theless, we hope that our results reproduce correctly the
main qualitative features of the small-x parton distribu-
tions (f1,NS(x,Q2) and g1(x,Q2)) and give a true estimate
of the role playing by the “soft” (kT < 1 GeV/c) region
at small x .

5 Appendix

Here the analytical solution of equation (4) for the non-
singlet case is considered. It is convenient to introduce new
variables

y = ln(t/Λ2), z = − ln(β), y0 = ln(t0/Λ2),
y′ = ln(t′/Λ2), z′ = − ln(β′), u = ln(µ2/Λ2) (27)

then (4) for y < y0 looks like

A(y, z) = g + g

∫ z

0
dz′

∫ y0

u

θ(y + z − y′ − z′)A(y′, z′)dy′

+
∫ z

0

ν

y + z − z′
dz′

×
∫ y+z−z′

y0

θ(y + z − y0 − z′)A(y′, z′)dy′ (28)

where ν = 2CF /b = 8/(33− 2nf ) and g has been defined
by (15), (16). It is easy to see from (28) that

∂A(y, z)
∂z

− ∂A(y, z)
∂y

= g

∫ y

u

A(y′, z)dy′ . (29)

Differentiation of relation (29) over y gives the differential
equation valid at y < y0

∂2A(y, z)
∂y∂z

− ∂2A(y, z)
∂y2 = gA(y, z) . (30)

Putting in (29) y = u we get the following boundary con-
dition: [∂A(y, z)

∂z
− ∂A(y, z)

∂y

]∣∣∣
y=u

= 0 . (31)

For z = 0 we have from (28) that

A(y, 0) = g . (32)

Let us define the function ω

ω(y, ρ) =
∫ ∞

0
exp{−ρz}A(y, z)dz (33)

which for y < y0 (y > y0) will be denoted as ω1 (ω2). It
follows immediately from (30), (31) and (32) that ω1 looks
like

ω1(y, ρ) = C1(ρ) exp{(y − u)(ρ/2 +R)}+ (ρ/2−R)
×[1− C1(ρ)/(ρ/2 +R)] exp{(y − u)(ρ/2−R)} (34)

where R =
√
ρ2/4− g and C1(ρ) is an arbitrary function

which will be found below.
For y > y0 we get from (4), (7), (14) the integral equa-

tion

A(y, z) =
ν

y + z
(35)

+
∫ z

0

ν

y + z − z′
dz′

∫ y+z−z′

u

A(y′, z′)dy′ .

The solution of (35) obeys the differential equation [10,
21]

∂

∂y

{
y
( ∂

∂z
− ∂

∂y

)
A(y, z)

}
= νA(y, z) (36)

with the boundary condition at y = y0 + ε, ε→ 0[∂A(y + ε, z)
∂z

− ∂A(y + ε, z)
∂y

]∣∣∣
y=y0

=
ν

y0

∫ y0

u

A(y′, z)dy′ . (37)

To solve (36) we apply the Laplace transformation (33)
remembering that for z = 0 and y > y0

A(y, 0) =
ν

y
(38)

which can be easily got from (35). It follows from (36)
that ω2 looks like [10], [21]

ω2(y, ρ) = C2(ρ)(ρy)−1/2 exp{ρy/2}Wκ−1/2, 0(ρy) (39)
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where Wk,m(ζ) denotes the Whittaker function defined as
in [20], κ = ν/ρ and C2(ρ) is an arbitrary function of ρ
but not y. Applying the Laplace transformation to (37)
and remembering (33), (38) we get the formula

ρω2(y0, ρ)− ∂ω2(y, ρ)
∂y

∣∣∣
y=y0

=
ν

y0

[
1 +

∫ y0

u

dy′ω1(y′, ρ)
]

(40)

which relates C1(ρ) and C2(ρ) due to (34) and (39). Putt-
ing y = y0−ε in (28) and y = y0+ε in (35) and making use
of the Laplace transformation to the difference between
these two equations we have for ε → 0 another boundary
condition

ω2(y0, ρ)− ω1(y0, ρ) =
[
ν
eζ/2√
ζ
W−1/2, 0(ζ)− g/ρ

]
×
[
1 +

∫ y0

u

dyω1(y, ρ)
]

(41)

where ζ = ρy0. Formula (41) gives the second relation
for C1(ρ) and C2(ρ). Then we can easily found C1(ρ) and
C2(ρ) from (40) and (41) remembering (34) and (39) which
are

C1(ρ) =
(ρ/2 +R)
2 sinh(η)

[Wκ, 1/2(ζ)/D(ρ)− exp{−η}] , (42)

C2(ρ) =
ν exp{−ρu/2}

D(ρ)
, (43)

where

D(ρ) =
{ [νeζ/2√

ζ
W−1/2, 0(ζ)− g

ρ
+
ρ

2

]
Wκ, 1/2(ζ)

−νWκ−1/2, 0(ζ)√
ζ

} sinh(η)
R

+ cosh(η)Wκ, 1/2(ζ) (44)

with η = (y0 − u)R, κ = ν/ρ.
The general solution of (4) for the non-singlet case is

given by the inverse Laplace transformation

A(y, z) =
1

2πi

∫ a+i∞

a−i∞
dρ exp{ρz}ω(y, ρ) (45)

with the parameter a in (45) chosen so that the integration
contour runs to the right from all singularities of ω(y, ρ)
in the complex ρ-plane. The function ω(y, ρ) at y < y0 has
been defined by (34), (42), (44) and at y > y0 it can be
found from (39), (43), (44). Taking into account analytical
properties of the Whittaker functions Wκ−1/2, 0(η) and
Wκ, 1/2(ζ) we can easily prove with the help of (44) that
D(ρ) is an analytical function of ρ in the complex ρ-plane
with a cut from −∞ up to 0. It can have zeros at real ρ
which we denote as λn (λ1 > λ2 > λ3 > ...). The solutions
of the equation

D(ρ) = 0 (46)

are the poles of C1(ρ), C2(ρ) what follows from (42), (43)
and hence they are also the poles of ω1(y, ρ), ω2(y, ρ) as

we can see from (34) and (39). Let us denote the derivative
of D(ρ) over ρ at ρ = λn as Dn than the pole contribution
to integral (45) for large y (y > y0) is equal to

An(y, z) =
ν

Dn

√
λny

exp{λn(z + y/2− u/2)}
×Wκn−1/2, 0(λny) (47)

where κn = ν/λn. For y > y0 the asymptotical behaviour
of A(y, z) at large z (small β) is determined by the right-
most singularity of ω2(y, ρ) and looks like

A(t, β) ∼ A1(t, β) = S1β
−λ1(t/Λ2)λ1/2[λ1 ln(t/Λ2)]−1/2

×Wκ1−1/2, 0(λ1 ln(t/Λ2)) (48)

where S1 denotes a constant equal to ν exp{−λ1u/2}/D1.
We have used in (48) relations (27). The dependence of
A1(t, β) on t and β given by (48) has the same form as for
the perturbative QCD which is described by formulae (60)
and (39) in [21]. It has been shown in [21] that substituting
(48) in (5) we can get for the small-x asymptotics of the
non-singlet structure function the final relation

fNS(x,Q2) = λκ1
1 exp{−λ1u/2}D−1

1 x−λ1{lnκ1(Q2/Λ2)
− lnκ1(µ2/Λ2) + κ1 lnκ1−1(Q2/Λ2)
×[ψ(1)− ψ(λ1)]} (49)

which coincides with (26) if we take into consideration
that F1 = λκ1

1 exp{−λ1u/2}/D1 .
As it has been explained in the text we simulate the

non-ladder Feynman graph contributions to the non-singlet
structure function g1,NS(x,Q2) replacing ν by γ = 1.08ν
in G(tm) in (4) but not changing the inhomogeneous term
A0. In the same way as we have got formulae for ω1(y, ρ)
and ω2(y, ρ) we can obtain now that for y > y0

ω2(y, ρ) =
{−τ exp{−ζ/2}

Wσ, 1/2(ζ)
+

γ

D(ρ)

[
exp{−uρ/2}

+τ exp{−ζ/2} sinh(η)
R

S

Wσ, 1/2(ζ)

]}
×exp{ρy/2}√

ρy
Wσ−1/2, 0(ρy) (50)

where τ = 0.08ν, σ = γ/ρ and

S =
[

exp{ζ/2}W−1/2, 0(ζ)Wσ, 1/2(ζ)
−Wσ−1/2, 0(ζ)

]
/
√
ζ . (51)

Poles of ω(y, ρ) in the ρ-plane are zeros of the function
D(ρ) as before but now it looks like

D(ρ) = γS
sinh(η)
R

+Wσ, 1/2(ζ)
[
cosh(η) + (

ρ

2
− g

ρ
)
sinh(η)
R

]
.(52)

Introducing a quantity of Z

Z = S[γ cosh(η)− τ exp{−(y0 − u)ρ/2}]
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+Wσ, 1/2(ζ)[R sinh(η) + (
ρ

2
− g

ρ
) cosh(η)] (53)

we have the formula for ω(y, ρ) at y < y0

ω1(y, ρ) = exp{(y − u)ρ/2}
{ρ

2
cosh(w) +R sinh(w)

− Z

D(ρ)

[ ρ

2R
sinh(w) + cosh(w)

]}
(54)

where w = (y − u)R. It is easy to see from formulae
(50), (54) that though ω1(y, ρ) and ω2(y, ρ) depend on
R =

√
ρ2/4− g but there are no any brunching points at

ρ = ±2
√
g as they contain even powers of R only. It can

be proven that ω1(y, ρ) and ω2(y, ρ) have cuts in the com-
plex ρ-plane from −∞ up to 0 and poles for the positive
values of ρ which obey (46) with D(ρ) given by (52). We
would like to remark that there are no poles of ω2(y, ρ)
which correspond to zeros of the function Wσ, 1/2(ζ). In-
deed, the pole contributions of the two terms containing
Wσ, 1/2(ζ) in denominator in (50) cancel each other. For-
mula (26) remains valid for Q2 > t0 as the non-ladder
graph contributions do not change the y-dependence of
ω2(y, ρ) given by (39) but change C2(ρ) only which leads
to an alteration of the constant F1 and to the replacement
κ1 = γ/λ1 in (26).
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